Agarikon.1 and Agarikon Plus Affect Cell Cycle and Induce Apoptosis in Human Tumor Cell Lines

Boris Jakopovich, Ivan Jakopovich, Neven Jakopovich

Dr Myko San – Health from Mushrooms
Miramarska c. 109, Zagreb, Croatia
INDEX

• Introduction
• Materials and Methods
• Results
• Conclusions
INTRODUCTION

- Continuation of the study on 6 blended mushroom products and 3 single extracts on 4 human tumor cell lines (Durgo, Jakopovich 2013)

- Neutral Red and MTT proliferation assays demonstrate that blended extracts cause increased tumor cell membrane and mitochondria damage

- This study concentrates on the mechanisms; effects on the cell cycle and inducing apoptosis
Medicinal mushroom metabolites can interfere and modulate all processes related to the 8 steps of carcinogenesis (Petrova 2012):

- inflammation
- cancer cell proliferation
- adhesion
- apoptosis
- angiogenesis
- gene expression
- invasiveness
- metastasis
Apoptosis - programmed cell death - is a crucial tumor suppression mechanism

- eliminates cells with extensive DNA damage (potentially leading to cancer)

- differentiation - cell growth – apoptosis balance
Purpose of the Study

Investigate:
A. proliferation (cell cycle disturbance)
B. induction of apoptosis

– medicinal mushroom extract blends Agarikon Plus and Agarikon.1
– concentration response
– 24 and 48 hour response
– 2 human tumor cell lines: H460 (lung carcinoma) and Caco-2 (colon carcinoma)
– Camptothecin, referent antitumor compound; cytotoxic dose 10 μM used
MATERIALS AND METHODS

Cell lines
• H460 (large cell lung carcinoma)
• Caco-2 (colorectal adenocarcinoma)

Tested extract blends
• Agarikon.1 tablets
• Agarikon Plus

Experimental methods
• Proliferation Assay by MTT
• Cell Cycle Analysis by flow cytometry
• Annexin V Assay for Apoptosis Induction Detection
• Western Blot Analysis
TESTED PRODUCTS

• Agarikon.1 tablets (AG.1)

• proprietary mushroom extract blend from Dr Myko San company

• *Ganoderma lucidum, Lentinus edodes, Grifola frondosa, Pleurotus ostreatus, Agaricus brasiliensis*

• registered med. mushroom supplement

• recommended treatment dose: \(~0.1\) g/kg bodyweight per day of soluble polysaccharides
• Agarikon Plus extract blend (AG+)

• proprietary mushroom extract blend from DMS

• 10 medicinal mushroom species (inc. *G. lucidum*, *L. edodes*, *G. frondosa*, *P. ostreatus*, *A. brasiliensis*)

• in liquid form

• Recommended treatment dose: ~0.16g/kg BW per day of soluble polysaccharides
1 Proliferation Assay

- Cells cultured as monolayers, plated in parallel on day 0, at 3×10^3 cells/well (H460) and 7×10^3 cells/well (Caco-2), depending on doubling times.

- AG.1 and AG+ added at 0.001, 0.01, 0.1, 1 and 10 mg/ml concentrations (stock solution for both 40 mg/ml, and 4×10^{-3} M/DMSO for camptothecin).

- We used MTT assay to evaluate cell growth rate after 72 hours (absorbance was measured at 570 nm).
2 Cell Cycle Analysis

- seeded at 1×10^5 cells/well (H460) and 2×10^5 cells/well (Caco-2), depending on the doubling times

- After 24 hours, AG.1 and AG+ applied at concentrations 0.1 mg/ml and 1 mg/ml; camptothecin (10 μM) for positive control

- After the incubation period, cells were trypsinized, washed with Phosphate Buffer Saline (PBS); stained with propidium iodide (PI) and analyzed on FACScalibur flow cytometer

- Ratio of cells in each cell cycle phase was determined by analyzing the DNA histograms using ModFit LTTM software
3 Annexin V Assay for Apoptosis Induction Detection

• same concentrations used; 0.1 and 10 mg/ml

• cell populations were gated into regions corresponding to live, early apoptotic and late apoptotic/necrotic cells

<table>
<thead>
<tr>
<th>Annexin V</th>
<th>PI</th>
<th>Cell Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>Live cells</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>Early apoptotic</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>Late apoptotic /necrotic</td>
</tr>
</tbody>
</table>
4 Western Blot Analysis

- mushroom extracts (0.1 and 1 mg/ml) were added to well plates after 24 hours
- total proteins were measured using BCA Protein Assay Reagent, separated by SDS-polyacrylamid gel electrophoresis and transferred to PVDF membrane → probing with anticaspase 3, anti-p53, and anti-p21 primary antibodies
- equal loading confirmed using anti-tubulin primary antibody
RESULTS

Proliferation Assay

- Agarikon Plus (strong effect at 10 mg/ml, \(GI_{50} \approx 2-3 \text{ mg/ml} \)) and Agarikon.1 inhibit the growth of both tumor cell lines
- H460 cells are more resistant to Agarikon.1 (approaching \(GI_{50} \) above 10 mg/ml mass concentration)

<table>
<thead>
<tr>
<th>Test agent</th>
<th>Caco-2</th>
<th>NCI-H460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarikon Plus</td>
<td>1.9 ± 0.1</td>
<td>3.4 ± 1</td>
</tr>
<tr>
<td>Agarikon.1</td>
<td>1.6 ± 0.3</td>
<td>≥10</td>
</tr>
</tbody>
</table>

\(GI_{50} \): growth inhibition 50 - the concentration that causes 50% growth inhibition
• Concentration-response curves showing growth inhibition of H460 and Caco-2 cell in vitro after 72 hours after adding Agarikon.1, Agarikon Plus, and camptothecin.
expected Camptothecin curve confirms valid measurements (positive control)
Cell Cycle Analysis

- Distribution of H460 cells by cell cycle phase: G0/G1, S, G2/M; and sub G1 (dead/apoptotic cells)
- treated with Agarikon Plus, Agarikon.1 (at 0.1 and 10 mg/ml), camptothecin at 10 μM.
- measured by flow cytometry at 24 and 48 hours
no significant influence on cell cycle
moderate increase in apoptotic/dead cells for AG+ at higher concentrations
AG+ and AG.1 (1mg/ml) induce accumulation of cells in G1, reduction in S, increase in sub G1 (apoptotic/necrotic)
• **AG+ (1mg/ml):** reduced G1, increased S
• **no significant sub G1 influence**
- AG+, AG.1 (1 mg/ml) reduced G1, increased S phase
- no significant sub G1 influence
Apoptosis Induction Detection by Annexin V Assay

- Ratio of H460 cells in early or late apoptosis, obtained by co-staining with FITC-labeled annexin V and propidium iodide (PI) and analyzed by flow cytometry.
• AG+ (1 mg/ml): moderate increase in early apoptotic cells
AG+ (1 mg/ml): larger increase in late apoptotic/necrotic cells
• no significant influence, AG+ (1mg/ml) moderate early apoptotic cell increase
• AG+ (1 mg/ml): moderate increase in induced early apoptosis
Apoptosis induction detection by caspase-3 cleavage assessment

- Appearance of the 17-kDa subunit (caspase-3 p17) – a major cleaved product of the 32-kDa zymogen pro-caspase-3 - confirms caspase-3 activation which marks the induction of apoptosis.
The effect of AG+ and AG.1 on cleavage of procaspase-3 in H460 cells (24; 48 hours)

A. AG+ at 0.1 mg/ml (lanes 1;6), 1 mg/ml (lanes 2;7).
B. AG.1 at 0.1 mg/ml (lanes 3;8), 1 mg/ml (lanes 4;9)
C. Camptothecin at 10μM (lanes 5;10)
The effect of AG+ and AG.1 on cleavage of procaspase-3 in **Caco-2** cells (24; 48 hours)

A. AG+ at 0.1 mg/ml (lanes 1;6), 1 mg/ml (lanes 2;7).

B. AG.1 at 0.1 mg/ml (lanes 3;8), 1 mg/ml (lanes 4;9)

C. Camptothecin at 10μM (lanes 5;10)
Influence of AG+ and AG.1 on p53 and p21 protein expression

- Agarikon.1, in both concentrations, induced mild p53 protein expression in H460 after 24 hours (A; lanes 3 and 4)
Both Agarikon Plus (lane 2) and Agarikon.1 (lane 4) at the concentration of 1 mg/ml induced a moderate increase in the expression of both p53 and p21 after 24 hours in H460
In Caco-2 cells (B), only minor upregulation of p21 protein expression is detected after 48 hour treatment.
CONCLUSIONS

• Agarikon Plus and Agarikon.1 possess antiproliferative, mainly cytostatic activity, on H460 and Caco-2 cells, in the concentration range 1-10 mg/ml
• Both induce cell cycle perturbations, by delaying the progress through the G1 and S phase
• This points to disturbances occurring before or during DNA replication (confirmed by increase in both p53 and p21 protein expression)
CONCLUSIONS (II)

• Although a modest induction of early (after 24 hours) and late (48 hours) apoptosis was noticed by annexin V test, no processing (cleavage) of caspase-3 was detected.

• More-pronounced antiproliferative activity (MTT) of tested agents towards Caco-2 line at maximal concentration (10 mg/ml) points to a non-specific cytotoxic effect.
Acknowledgements

Dr. Marijeta Kralj
Dr. Ana-Matea Mikecin

Biozyne, Bijenicka c. 54, 10000 Zagreb, Rudjer Boskovic Institute
Thank you for your attention!

• Send correspondence to: borisjakopovic@yahoo.com
APPENDIX
Percentage of Growth definition

• The percentage of growth (PG) was calculated according to either of the following expressions:
 • If \((A_{\text{test}} - A_{\text{tzero}}) \geq 0\) then:
 \[
 \text{PG} = 100 \times \frac{(A_{\text{test}} - A_{\text{tzero}})}{(A_{\text{cont}} - A_{\text{tzero}})}
 \]
 • If \((A_{\text{test}} - A_{\text{tzero}}) < 0\) then:
 \[
 \text{PG} = 100 \times \frac{(A_{\text{test}} - A_{\text{tzero}})}{A_{\text{tzero}}}
 \]
 • Where:
 \[
 A_{\text{tzero}} = \text{the average absorbance before exposure of the cells to the test compound}
 \]
 \[
 A_{\text{test}} = \text{the average absorbance after the desired period of time (72 h)}
 \]
 \[
 A_{\text{cont}} = \text{the average absorbance after 72 hours with no exposure of cells to the test compound}
 \]

• The results were presented as concentration response curves and GI50
Camptothecin Proliferation Assay

Camptothecin

Percentage of growth (%)

log concentration (M)

Caco-2
H 460